روش های عناصر متناهی برای حل معادلات دیفرانسیل کسری

thesis
abstract

معادلات دیفرانسیل کسری،بخصوص معادلات دیفرانسیل جزئی کسری کاربردهای زیادی در پردازش انتشار،الکترومغناطیس و علم مواد دارند.دراین پایان نامه روش عناصر متناهی را برای حل معادلات دیفرانسیل جزئی کسری زمان در نظر می گیریم.وجود و یکتایی جواب با استفاده از لم لکس-میلگرام اثبات می شود.یک روش گام زمانی مبنی بر یک قاعده انتگرال گیری معرفی می شود.روش تمام گسسته با استفاده از روش عناصر متناهی مطرح می شود و تخمین خطای همگرایی مرتبه بهینه فراهم می شود. مثال های عددی در انتهای این پایان نامه نشان می دهد نتایج عملی با نتایج تئوری ما سازگارند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

بررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری

عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...

full text

روش گسسته عناصر متناهی برای حل معادلات دیفرانسیل تأخیری

در این پایان نامه روش گالرکین ناپیوسته بر روی معادلات دیفرانسیل تأخیری خطی مرتبه اول را بررسی می کنیم.که از چندجمله ای های رادو به عنوان پایه استفاده کرده ایم و با استفاده از آنالیز تعامد بر روی هر بازه نتایج فوق همگرایی این روش را در نقاط گره ای به دست می آوریم.

بررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری

عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتق...

full text

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023